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Abstract. In this paper and following a method developed by Bel, Salas and Shchez-Ron 
the equations of predictive relativistic mechanics are solved for the gravitational interaction 
of two structureless point particles, up to the second order in the coupling constant 
g = Gmlmz. The equations of motion for the 'static' case are explicitly given as well as the 
value for the perihelion shift of a planet in the corresponding Kepler problem. 

1. Predictive relativistic mechanics 

Predictive relativistic mechanics (PRM) deals with the problem of formulating an action- 
at-a-distance relativistic theory of structureless point particles which interact among 
themselves. Up to now, in spite of the fact that PRM has proved to be quite successful and 
seems to be one of the few (possibly the only) consistent models for a dynamics 
compatible with the postulates of special relativity, it has only been applied to the 
electromagnetic (Bel et a1 1973) and the short range scalar (Bel and Martin 1974) 
interactions, not to the gravitational interaction. The purpose of this paper is to initiate 
the treatment of gravitation within the framework of PRM. 

In this section we shall briefly review those definitions and results of PRM which we 
shall need later. For a more complete discussion the reader is referred to Droz-Vincent 
(1970) and Bel (1970, 1971). 

Let us consider the Minkowskian space-time M4 (signature vap = + 2). A PoincarC- 
invariant predictive system is described by equations of motion which are autonomous 
ordinary second-order differential equations (we shall make use of the manifestly 
covariant formalism instead of the time-symmetric one): 

where a, p, y, . . . = 0 ,1 ,2 ,3 ;  a, b, c, . . . = 1,2,  . . . , N, N representing the number of 
particles. This verifies firstly 

t This work was initiated during the author's stay at the Department of Mathematics, King's College, London, 
supported by a European Space Research Organisation research studentship. 
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for each PoincarC transformation (L;  , A ” ) .  4; is the general solution of system ( l . l ) ,  
i.e. 

and secondly 

‘(1.3) 

(a # b, no summation over a )  and 

g u u p  = 0. (1.4) 

Obviously equation (1.4) implies that u:uup is constant along each trajectory. (In the 
following we shall consider only the two-body problem ( N =  2), that is a, b = 1,2, 
a # b).  

The exigence of invariance under the orthochronous PoincarC group permits us to 
express the 6 in the following way: 

6: = (-l)ba,xP + b,,u: f b , b U f ,  (1.5) 

where xp ~ ( - l ) ~ ( x :  -xf ) ,  and the coefficients a,, b,,, bab are functions of the four 
scalar variables: 

(1.6) 2 0  P x ‘X x,, (xu,)=x:u,p, k ‘ - U , U b p ,  

(unless otherwise stated, the units will be so chosen that the speed of light in vacuum 
will be c = 1). Since U! will be taken as future-oriented (U:> 0), timelike vectors, 
U, = + ( - U ! U , ~ ) ~ ’ ~ ,  are real and k is positive. 

Ih a preceding paper, Bel et a1 (1973) have shown how to solve equations (1.3)-( 1.5) 
assuming that the unknowns could be expressed as power series in a coupling constant g .  
IE that paper this method was applied to the electromagnetic interaction taking g = e lez  
(e, is equivalent to the charge of particle a )  and using the formula of LiCnard and 
Wiechert as a boundary condition. Afterwards Bel and Martin (1974) considered the 
short range scalar interaction within the same framework. In the present paper we 
apply the general method developed by Bel et ai (1973) to the gravitational interaction 
making use also of Bel and Martin’s results (Bel and Martin 1974) conveniently 
particularized. 

2. The Galilean principle of equivalence 

It is today widely accepted that the first requisite which a theory must fulfil in order to 
describe the gravitational interaction is to incorporate the Galilean (or weak) principle 
of equivalence, namely: the ratio of inertial to gravitational mass is the same for all 
objects (all bodies fall equally fast). This requisite is firmly grounded on the work of Roll 
et a1 (1964) and Braginsky and Panov (see Braginsky 1974). The value today accepted 
for the relative difference of the ratio of the inertial to the gravitational mass for 
different bodies is (-0.3*0-9) lo-’’. This means in fact that the Galilean principle of 
equivalence is one of the best experimentally supported results in all physics. 

Considering PRM, the equality between inertial and gravitational masses can be 
incorporated in the same way as in Newtonian mechanics, i.e. as a separate exigence. 
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This is due to the fact that, as we saw in 9 1, the equations of motion in PRM are of the 
same type as the corresponding ones in Newtonian mechanics. Furthermore, due to 
constraints (1.3) and (1.4), the functions l z (x f ,  U:) depend on 6N initial conditions; 
that is, given this number of initial conditions the world lines of the particles are 
completely determined, as happens in Newtonian mechanics. 

3. The two-body problem: recurrent method to obtain the accelerations? 

In order to determine the functions 6; for N = 2 it is assumed that they can be expanded 
into power series with a coupling constant g :  

(3.1) 

Introducing these expansions into (1.5) we have 

Solving order by order equations (1.3) and (1.4), the general solution can be expressed 
in two different forms (E = *l): 

all, except the last one, being kept constant during the integrations in (3.3) and (3.4). 

4. Gravitational interaction 

It is well known (Anderson 1967) that, in order to describe the gravitational interaction 
of massive bodies, one of the possibilities is to represent the gravitational field by a 
scalar field +(x) within the framework of special relativity and to replace the 
inhomogeneous Laplacian equation by the inhomogeneous wave equation 

O ~ ( X )  = 47rGp(x) 

t Here the recurrent method is only sketched. For a complete discussion the reader is referred to Bel et a1 
(1973), Salas and Sinchez-Ron (1974), and Bel and Martin (1974). 
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where 

p ( x >  = x m ,  I S4(x - x , ) ( u ~ u , ~ ) ' / ~  dA,. 

Such a theory is equivalent to the meson field theory of field equation 

(0+cu2)4J(x) = 47rp(x) 

where 

with (Y = 0 and the mesonic charge e, replaced by Gm,. Therefore we can use the 
results corresponding to the mesonic interaction in PRM (Bel and Martin 1974) 
conveniently particularized and with an appropriate coupling constant. 

In that sense let us now consider an isolated system of two point-like structureless 
particles interacting gravitationally. Let ma be the mass of particle a and I,b:(7=) the 
parametrized equations of the world-line of particle a, 7, being the corresponding 
proper time. The retarded or advanced potentials ( E  = -1 or E = +1) due to particle b at 
a given point of the world-line of particle a with which b interacts gravitationally (a = 0) 
are (see for example Havas 1952) 

where 8 is the Heaviside step function, S the Dirac distribution and lz  = I,b; (q,) -xz. Let 
U; be the unit four-velocity at the point x z  ; by integrating (4.1) we have 

(be ( X z )  = (-1)'EGmb(XUb)-' (4.2) 

X"X, = 0, sgn(xO) = (-1)'~. (4.3) 

where it is assumed that 

By taking the derivative of equation (4.2) with respect to x f  and taking into account 
conditions (4.3) we obtain 

%(Xz) '€Gmb(XUb)-2{Ubp +(XUb)-'[l +(-l)*(X&)]Xp} (4.4) 
ax a 

where again the constraints (4.3) must be assumed. 

the following equation of motion 
Following a similar approach to the one of Bel and Martin (1974) we shall consider 

where ,y is an arbitrary constant. (In the equation they consider, Bel and Martin give the 
values 0 or 1 to the constant ,y in order to deal with the two scalar theories which have 
been most often treated in the literature; however this is not necessary and for the 
moment we shall keep an arbitrary x). 

Substituting equations (4.2) into equation (4.5) we obtain the following equation 
which will play the same role of boundary condition as the Lienard-Wiechert formula 
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where g E Gm,mb. 
The first and second order terms, in the coupling constant g,  of equations (4.6) are 

6:'" = -Em,'(q"' + ~ : u t ) ( x u b ) - ~ [ u b ~  + (xub)-'xg] (4.7) 

(4.8) = (-1)am;2(Xub)-3(rlaB + u : u E ) ( ~ [ u b ~  + ( x u ~ ) - ~ x ~ ] + E ~ , ( x ~ ~ ) ) x ~ ~ .  

( : ) " ( E ;  E )  = -Em,'(q"' +u:uf)(xub)-2[ubg +(xub)-lx@], 

Using the notation P ( E ;  r) = value of p ( x f ,  U:; E )  when the vector (-l)bx" is null 
and future-oriented (-) or null and past-oriented (+) we have 

(4.9) 
where it is assumed that x"x, = 0. From equation (3.2) we get 

a ,  (1) ( E ;  (-1)QE&1(xub)-3 

b,, ( 1 )  ( E ;  E )  = - ~ m , ' ( x u ~ ) - ~ s ~ ,  

where (3.7) has been used. 
But from equations (3.3)-(3.6) we have 

( 1 )  
U ,  ( E )  = a:'*(rb, Sb, k ;  E)  
by:(€) = bh','*(rb, Sb, k ;  E ) ,  

and assuming that x"x, = 0, xo= (-l)aElxoI, we use equations (3.7) to get: 

(4.10) 

(4.11) 

(4.12) 

(Xu,)=Sb +(-l)bEkrb, (xub) = (-l)berb. (4.13) 

Substituting equations (4.13) into expressions (4.10) and (4.1 1)  we obtain 

(4.14) 

(4.15) 

and using equation (3.5) 

b$,)(~) = ( - l ) " m , ' ( x ~ ~ ) r ~ ~ .  (4.16) 

From expressions (4.14)-(4.16) we get 

(4.17) 

Let us now compute ~ f ' " ( x f ,  U : ;  E ) .  The first step is to calculate (:'"(E; E )  using 

(4.18) 

Substituting (4.18) into (4.8) we obtain the coefficients of (:'"(E; E )  in the expres- 

-1  -3 a [h""(xt, U:; E )  = (-l)"m, r b  [x  +sbu: +(xub)u;I .  

equations (4.8). Let us start by computing ( x , $ ~ ) ( E ;  - E ) ) ,  

( x ( ~ ' ( E ;  - E ) )  = Embl[sb + k ( ~ u ~ ) ] - ~ [ s ~ + ( x u ~ ) ~ + k s ~ ( x u ~ ) ] .  

sion 
6: '"(E;  E )  = (-1) b a ,  (2) ( E ;  E ) X "  +b::(E; E)u,a+bh2d(E; € ) U ; .  

The explicit expressions of the coefficients are 
a (2) , ( E  ; E )  = - ~ m , ~ ( x u b ) - ~  - m i  ' m  b ' (~ub)-~[sb  + k (xub ) ] -3[~i  + (xubI2 + ksb (xub)] 

(4.19) 
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bf&; E )  = (-1)“(xUb)-3{mp2[2 + sb(XUb)-’] + malmbl[sb + (XUb)] 

x[Sb f k(XUb)]-3[Si+ kSb(XUb)]}; 

b % ( ~ ;  E )  will be obtained substituting (4.19) and (4.20) into (3.5). 
Using expressions (3.3), (3.6), (4.17) and (3.7)t we obtain 

(4.20) 

(4.21) 

a similar expression can be obtain for bfi by using (3.4) instead of (3.3). The integrals 
which appear in these expressions can be easily calculated but the results obtained are 
rather cumbersome. 

2 -3/2 
X [ r i + s ; +  2ksby + ( k 2  - 1))’ ] dy +ah2’*(rb, Sb, k ;  E ) ;  

From (3.3) and (3.4) it is obvious that 

a:)(€ ; E )  = a:’*(€ ; E ) ,  bZ)(E ; E) = bL)*(E ; E), (4.22) 

and therefore erpressions (4.19) and (4.20) determine ah2)*(€, E) and bit*(€, E) respec- 
tively. The functions up’* and bh2,‘* can now be obtained just by substituting (XUb) by 
(-l)bErb in (4.19) and (4.20) in accordance with equations (4.13). 

Finally to obtain bL?(e) we just have to use the preceding results together with (3.5). 

5. The ‘static’ gravitational interaction 

We shall now use the preceding results in order to obtain a relativistic correction to the 
‘static’ gravitational interaction given by Newton’s law of gravitation. To do this we 
therefore need to know, up to the second order in the coupling constant g = Gmamb, the 
three-accelerations p6 (i, j ,  . . . = 1,2,3) when both particles have zero velocities at a 
given instant. Under these conditions we have 

sb = 0, k = 1, (xub) = 0 (5.1) 1/2 rb E r  E (x’x,) 9 

(in the considered instant only), and the three-acceleration of particle a is given by (see 
for example Salas and SBnchez-Ron 1974) 

(5.2) 
p:, = (-l)b(gci:)+g2ci:)+ . . .)x i , 

where a$’ is the value of a:’ when its arguments take the values (5.1). 
Introducing conditions (5.1) into equation (4.14) we trivially obtain 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

-1 -3 ma r . c;;” = - 

d2’= a ma -l  m b  -l r -4 +ah2)*(r,0, 1, E )  

uL2’*(r, 0, I, E )  = -kmi2+m,1mi1)r-4; 

6 a (2) =-xm,2r-4. 

Let us now calculate 6:’. Substitutingconditions (5.1) into expression (4.21) we get 

where 

that is, 

t The following relation is also needed 

r: = , : + s i +  2ksb(xub) +(k2 - l ) (xub) ‘ .  
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It is worth noting that, to these orders, ay’ as well as ab2’ are independent of E, 
something which most probably will not happen for higher orders (see Salas and 
Sinchez-Ron 1974). 

Substituting (5.3) and (5.6) into (5.2) we finally obtain 

(5.7) 

As it is obvious from equation (5.7), for the ,y = 0 scalar theory we only get (to the 

Restoring c (speed of light) in equation (5.7) we get 
order of approximation considered here) Newton’s law of gravitation. 

Solving this system of six equations we should have a relativistic solution for the 
motion of two gravitating particles. In this paper and in order to compare our results 
with the classical astronomical tests we shall deal with the Kepler problem where one of 
the two bodies has a much larger mass than the other (one mass moving in a fixed field). 
Let us suppose for instance that m2 >> m l .  We can then write 

-= P ;  - (:)(c2r+xGm1) 
Pi  c2r  +,yGm2 

which obviously tends to zero when m2 >> m l ;  that is p; 5 0. Therefore and without loss 
of generality we have x: = O  (using the fact that at a given instant U: =O). As a 
consequence of all these considerations (5.8) takes the following form 

X‘ = -?( 1 +xg)x‘, (5.9) 

2 1  2 where x’ = x i ,  x’ = d  x ldt  , m = m2. 

(5.9) then reduce to 
Since the force in (5.9) is central we have a planar motion (i.e. x 3  = 0). Equations 

Y = -%( r 1 +$Jy, 
(5.10) 

1 2 where x = x  , y E X  , r = ( x ~ + Y ~ ) ~ ” .  It is convenient to replace (x, y )  with polar 
coordinates ( r ,  c p )  defined as usual by 

x = r cos cp, y = r sin cp. 

In this system equations (5.10) take the following form 

(5.11a) 

(5.1 1 b )  
d $24) = 0. 
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From (5.11b) we obtain immediately 

(5.12) 

For our purposes it is convenient to consider r as a function of cp instead of t. Making use 
of a new variable U = l / r  and substituting (5.12) in (5.114) we finally arrive at the 
following equation 

2 r Q = h ‘constant. 

(5.13) 

which differs from the corresponding equation in Newton’s theory by the second term 
on the right-hand side. 

It is interesting to note that Chazy (1928) considered almost fifty years ago, from a 
Newtonian perspective, a system of equations which contained equations (5.10). 
Making a = -x/2, p = y = A = 0 in Chazy’s equations (see Chazy 1928, p 106, equa- 
tions (15)) we obtain (5.10). Also Sommerfeld’s theory of the hydrogen fine structure 
for x = 1 leads to our results (see for example Sommerfeld 1923, 1952). 

From equation (5.13) we obtain for our theory an advance (if x>O) of the 
perihelion of 

XrGm 
c2a(1  - e 2 )  sw = 

radians per revolution ( a  and e are essentially the semi-major axis and the eccentricity 
of the Kepler ellipse respectively). Therefore for x = 1 the result is a sixth of the value 
predicted by Einstein’s general relativity. 

Due to the fact that x = 1 corresponds to one of the classical scalar theories which 
give a retardation for the perihelion shift of a planet, our results seem to contradict this 
standard result for a scalar interaction, but it must be taken into account that we have 
made use of the ‘scalar formula’ (4.6) only as a boundary condition to obtain approxi- 
mate solutions of the equations of PRM and as far as we can see there is no reason why, in 
this situation, we must regain the same results as given by scalar theory. 

We can obtain Einstein’s results for the advance of the perihelion by using as a 
boundary condition a scalar theory with x = 6. In that situation we shall have the 
following equation of motion instead of (4.5) 

(5.14) 

The election of the perihelion shift of a planet as the only test by which to compare 
our results is motivated by the fact that it is today widely admitted that the perihelion 
shift is the most significant result for testing the purely gravidynamical aspects of a 
theory which tries to describe the gravitational field. To calculate, for example, the 
bending of light in a Schwarzschild field-usually the fatal test for standard scalar 
theories-it is necessary to develop a theory of interaction between the electromagnetic 
and the gravitational fields, a problem which is not yet solved within the scope of this 
paper. Moreover the method used here is particularly unsuitable for dealing with 
massless particles (m = 0) such as the photon, because in this case the algorithm of 
perturbations on the coupling constant GMm, ( M = m l ) ,  breaks down. In fact, up to 
now, no equations of motion for massless particles have been developed in PRM. 
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